Hand Protection
Specialized PPE for ELECTRIC VEHICLE MANUFACTURING
INTERACTIVE CROSS REFERENCE
Addressing AR/FR Pain Points
Bouton® FogLess® 3Sixty™ Technology
UNRAVELING THE DYNAMICS OF ESD
G-Tek® D3O® Impact Glove Series
JSP Force Typhoon™ 8 Twin Filter Half Masks with PressToCheck™
PIP® Field Installable 4-Point Hard Hat Chin Strap Demo
BioSoft™ Sustainable Bio-Based Ear Plugs
PPE For Emergency Responders
ATA Fiber Technology Strength Meets Comfort
G-Tek® VRX™ ADVANCED PROTECTION
PPE For Emergency Responders
Heated Apparel For Cold Climates
INTERACTIVE CROSS REFERENCE
INTERACTIVE CROSS REFERENCE
Welding Garment Material Performance
Bisley X-Airflow™ Workwear Shirts
ON-SITE PPE ASSESSMENT
3 COMMON TYPES OF COLD STRESS And How You Can Prepare For Them
SUSTAINABLE SOLUTIONS IN PPE
PROTECTIVE SLEEVE BUYERS GUIDE
MULTI-TASK WELDERS GLOVES Offer The Protection And Dexterity Welders Need
ON-SITE PPE ASSESSMENT
SURVIVIVNG THE SUMMER HEAT A Guide to Workplace Safety and Hydration
HALF MASK RESPIRATORS REVOLUTIONARY FORCE TYPHOON™8
SUSTAINABLE SOLUTIONS IN PPE
4 HIDDEN JOBSITE RISKS And How To Avoid Them
Mips®HELMET SAFETY SYSTEM TECHNOLOGY
Bouton OpticalAdvanced Lens Technologies in Safety Eyewear™
What to Consider When Choosing HIGH VISIBILITY MULTI-SEASON WORKWEAR
6 Key Facts to Help Understand ARC FLASH RISKS
ON-SITE PPE ASSESSMENT
Head Protection
REUSABLE VS. DISPOSABLEUsing The Right Garment For The Right Job
Experience Barrier Protection and Flexibility With EXTENDED USE GLOVES
What is Double Hearing Protection And When Would You Need It?
CUSTOM LOGO SERVICES FAST, EASY & PRECISE
SUSTAINABLE SOLUTIONS IN PPE
WELDING SAFETY SELECTOR GUIDE
3SP ONLINE TRAINING
BisleyPREMIUM MULTI-SEASON WORKWEAR
Natural Disaster Relief PPE EXPECT THE UNEXPECTED
MADE-TO-ORDER SLEEVES Custom Options for Enhanced Performance
Enhancing Workplace Safety in the Construction Industry with MULTI-DIRECTIONAL HEAD PROTECTION TECHNOLOGY
ON-SITE PPE ASSESSMENT
THORZT™ RAPID REHYDRATIONFor the Industrial Athlete
Protective Clothing
BioSoft™ THE WORLD'S FIRST SUSTAINABLE BIO-BASED EAR PLUGS
NOVAX ELECTRICAL SAFETYNot All Gloves Are Created Equal
INTERACTIVE CROSS REFERENCE
CONTROLLED ENVIRONMENT SELECTOR GUIDE
3SP ONLINE TRAINING
3SP ONLINE TRAINING
EYE PROTECTION SELECTOR GUIDE
HAND PROTECTION SELECTOR GUIDE
PIP offers the widest range of Seamless Cut-Resistant gloves and sleeves anywhere in the world. Cut-Resistant products are extensively used in industrial, construction and food processing markets. The use of Cut-Resistant gloves and sleeves has increased considerably over the years as we've led with the introductions of new yarns and grips.
BEST SELLER
16-560
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 4
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
09-K1600
Cut Level: A7
Test Method: ASTM F2992-15
Puncture Level: 2
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
The ANSI/ISEA 105-2016 standard outlines test methods for contact heat and scored from 0-5. The ASTM F1060-18 test is used to test conductive heat resistance against gloves and PPE. Measuring the highest contact temperature for which the time to second-degree burn is at least 15 seconds and the alarm time is at least four seconds. Learn More
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-MPT630
Cut Level: A6
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
BEST SELLER
16-564
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 2
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
BEST SELLER
16-350
Cut Level: A4
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
BEST SELLER
19-D322
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
PIP® has collaborated with global partners like Dyneema® to develop bio-based ultra-high molecular weight polyethylene fiber delivers the same performance as conventional HPPE fibers, but with a lower carbon footprint. This innovative technique utilizes the mass balance approach and further reduces our reliance on fossil fuel-based resources.
16-MPT430
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-AR413
Cut Level: A4
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2016 standard outlines test methods for contact heat and scored from 0-5. The ASTM F1060-18 test is used to test conductive heat resistance against gloves and PPE. Measuring the highest contact temperature for which the time to second-degree burn is at least 15 seconds and the alarm time is at least four seconds. Learn More
The NFPA has identified the various FR hazardous risk category levels, which range from PPE 1 (which is low risk and requires AR clothing with a minimum arc rating of 4), up to PPE 4 (which is high risk and requires AR clothing with a minimum arc rating of 40). Each level, 1-4, is rated at a certain amount of flame resistance measured in cal/cm2.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
EN 407 is a general European standard designed to be used for any glove that is to be sold as providing protection against thermal hazards. All six tests are graded on a scale from 0 to 4, with 0 signifying that the glove failed the test, and 4 demonstrating it has achieved the maximum resistance in that specific area.
BEST SELLER
16-150
Cut Level: A2
Test Method: ASTM F2992-15
Puncture Level: 4
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
BEST SELLER
16-530
Cut Level: A3
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
BEST SELLER
16-D622
Cut Level: A2
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
120-5150
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 5
Test Method: ASTM F1342
Abrasion Level: 6
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-635
Cut Level: A5
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
1CF7007NTPR
Cut Level: A6
Test Method: ASTM F2992-15
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-CUT229MS
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 5
Test Method: ASTM F1342
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-399
Cut Level: A9
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-354
Cut Level: A5
Test Method: ASTM F2992-15
Puncture Level: 4
Test Method: ASTM F1342
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
ESD is an acronym for electrostatic discharge. This discharge is the rapid transfer of static between two different objects. Although ESD doesn’t typically cause harm to the human body - you might only experience it as a small, surprising shock - it can cause extensive damage to electrical equipment and sensitive instruments. This damage may either be permanent, causing the device to malfunction (known as a catastrophic failure), or it may occur on a smaller scale that would be difficult to detect before the device is sent out for service (known as latent defect).
16-333
Cut Level: A3
Test Method: ASTM F2992-15
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
BEST SELLER
713KSSN
Cut Level: A6
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
The NFPA has identified the various FR hazardous risk category levels, which range from PPE 1 (which is low risk and requires AR clothing with a minimum arc rating of 4), up to PPE 4 (which is high risk and requires AR clothing with a minimum arc rating of 40). Each level, 1-4, is rated at a certain amount of flame resistance measured in cal/cm2.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
EN 407 is a general European standard designed to be used for any glove that is to be sold as providing protection against thermal hazards. All six tests are graded on a scale from 0 to 4, with 0 signifying that the glove failed the test, and 4 demonstrating it has achieved the maximum resistance in that specific area.
16-373
Cut Level: A7
Test Method: ASTM F2992-15
Puncture Level: 4
Test Method: ASTM F1342
Abrasion Level: 5
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-473
Cut Level: A7
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 6
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
The ANSI/ISEA 105-2016 standard outlines test methods for contact heat and scored from 0-5. The ASTM F1060-18 test is used to test conductive heat resistance against gloves and PPE. Measuring the highest contact temperature for which the time to second-degree burn is at least 15 seconds and the alarm time is at least four seconds. Learn More
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
EN 407 is a general European standard designed to be used for any glove that is to be sold as providing protection against thermal hazards. All six tests are graded on a scale from 0 to 4, with 0 signifying that the glove failed the test, and 4 demonstrating it has achieved the maximum resistance in that specific area.
120-5130
Cut Level: A2
Test Method: ASTM F2992-15
Puncture Level: 5
Test Method: ASTM F1342
Abrasion Level: 6
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
09-K1630
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 2
Test Method: ASTM F1342
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
The ANSI/ISEA 105-2016 standard outlines test methods for contact heat and scored from 0-5. The ASTM F1060-18 test is used to test conductive heat resistance against gloves and PPE. Measuring the highest contact temperature for which the time to second-degree burn is at least 15 seconds and the alarm time is at least four seconds. Learn More
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-573
Cut Level: A7
Test Method: ASTM F2992-15
Puncture Level: 4
Test Method: ASTM F1342
Abrasion Level: 6
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-533
Cut Level: A3
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-645LG
Cut Level: A5
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-MP935
Cut Level: A9
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
1CF7007N
Cut Level: A6
Test Method: ASTM F2992-15
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-561
Cut Level: A4
Test Method: ASTM F2992-15
Puncture Level: 3
Test Method: ASTM F1342
Abrasion Level: 5
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-MPH430HV
Cut Level: A4
Test Method: ASTM F2992-15
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
HVY710HSNFB
Cut Level: A3
Test Method: ASTM F2992-15
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
ANSI/ISEA 138 is a new, voluntary standard for the North American market designed to accurately classify different levels of impact protection offered by the impact-resistant gloves on the market. Click here for more information on our G-Tek Impact Series.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
09-K1250
Cut Level: A2
Test Method: ASTM F2992-15
Puncture Level: 2
Test Method: ASTM F1342
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
The ANSI/ISEA 105-2024 blunt force puncture testing uses a probe to simulate a tear or burst hazard. The test measures the amount of force needed for a blunt probe to pierce through PPE material. Results are given in Newtons, which is converted into a 1-5 scale and spans from 10 newtons (Level 1) to 150+ newtons (Level 5) of puncture resistance.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
HVG713SNF
Cut Level: A4
Test Method: ASTM F2992-15
Abrasion Level: 4
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
16-X570
Cut Level: A4
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
09-LC533AR
Cut Level: A5
Test Method: ASTM F2992-15
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The NFPA has identified the various FR hazardous risk category levels, which range from PPE 1 (which is low risk and requires AR clothing with a minimum arc rating of 4), up to PPE 4 (which is high risk and requires AR clothing with a minimum arc rating of 40). Each level, 1-4, is rated at a certain amount of flame resistance measured in cal/cm2.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
713CFHGWU
Cut Level: A5
Test Method: ASTM F2992-15
Abrasion Level: 3
Test Method: ASTM D3389-10
ANSI/ISEA has released a new edition of the ANSI/ISEA 105 standard (2024 ed). The changes include a new standardized glove label for easier identification of key protection levels for both distributors and end-users. The new pentagon marking was created to simplify and standardize the identification of protective glove performance levels, including abrasion, cut, and puncture resistance. By consolidating this information into a single, easily recognizable label, it improves usability for workers and reduces the risk of selecting inadequate protection. Learn more.
New edition ANSI/ISEA 105-2024 outlines a new test method for determining cut scores and a revised scale from A1-A9. Click here for more information about the new testing standard.
The ANSI/ISEA 105-2024 standard outlines test methods for abrasion and is scored from 0-6. The ASTM D3389-10 is used for uncoated gloves and the end point (failure) is the number of abrasion cycles when the first thread or yarn is broken. The larger numbers of cycles indicates greater abrasion resistance of the product and a higher Abrasion Level.
To see what chemicals included in the manufacturing of this product triggered the Prop 65 Warning please go to the Prop 65 Portal.
EN 388 is a European Standard. Cut Level is determined by the number of cycles it takes a spinning circular blade, that is pulled across the material under a constant weight of 500 grams, to cut the fabric. As the number of cycles increase, so does the glove's ratings. Click here for more information about the EN 388 2016 standard.
Proposition 65 | Privacy Policy | Contact Us | Full Site
© 2012-2025 Protective Industrial Products, Inc. All rights reserved.
CALL US TODAY: (518) 861-0133
CUSTOMER SERVICE DIRECT: (855) 284-6800